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N,N-dimethyltryptamine (DMT) is a potent endogenous hallucinogen present in the

brain of humans and other mammals. Despite extensive research, its physiological role

remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor

(Sig-1R), an intracellular chaperone fulfilling an interface role between the endoplasmic

reticulum (ER) and mitochondria. It ensures the correct transmission of ER stress into

the nucleus resulting in the enhanced production of antistress and antioxidant proteins.

Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia

or oxidative stress. In this paper, we aimed to test the hypothesis that DMT plays a

neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can

mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced

pluripotent stem cells, iPSCs), monocyte-derivedmacrophages (moMACs), and dendritic

cells (moDCs). Results showed that DMT robustly increases the survival of these cell

types in severe hypoxia (0.5% O2) through the Sig-1R. Furthermore, this phenomenon

is associated with the decreased expression and function of the alpha subunit of the

hypoxia-inducible factor 1 (HIF-1) suggesting that DMT-mediated Sig-1R activation may

alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent

manner. Our results reveal a novel and important role of DMT in human cellular physiology.

We postulate that this compoundmay be endogenously generated in situations of stress,

ameliorating the adverse effects of hypoxic/ischemic insult to the brain.
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INTRODUCTION

Originally thought to be an opioid receptor, the sigma-1 receptor
(Sig-1R) is now classified as member of an orphan family after Su
and colleagues had characterized the structural and biochemical
features of the ligand binding site and identified the class as
a non-opioid one (Su, 1982; Su et al., 1988). Later, based
on their pharmacological characteristics and tissue expression,
the distinction of Sig-1R and Sig-2R subtypes was proposed
(Hellewell et al., 1994). Previous studies showed that Sig-1R is
expressed not only in different regions of the brain but also
in immune cells (Su, 1982; Wolfe et al., 1988), and organs like
liver, kidney, and gut (Hellewell et al., 1994; Theodorou et al.,
2002). Sig-1R is chiefly an endoplasmic reticulum (ER) protein
located on the mitochondria-associated endoplasmic reticulum
membrane (MAM) where its main role is to regulate ATP
synthesis through the regulation of Ca2+ signaling by primarily
acting as a molecular chaperone (Hayashi and Su, 2007; Su et al.,
2016). Another MAM-related role of Sig-1R is to facilitate stress
signaling from the ER to the nucleus through chaperoning the
inositol requiring enzyme 1 (IRE1) and thereby increasing the
intracellular levels of antistress and antioxidant proteins (Mori
et al., 2013). Upon cellular stress, including hypoxia or oxidative
stress, Sig-1R interacts with numerous receptors, ion channels,
kinases, and variousmaster regulator proteins residing on the ER,
MAM, nucleus, or even in the cytosol to mobilize and fine-tune
antistress responses.

Based on these complex intracellular actions the Sig-1R has
been conceptualized as a “pluripotent modulator” in living
systems, as a controller of cell survival and differentiation
(Hayashi and Su, 2007; Mori et al., 2013) which may be
involved in many human diseases (Su et al., 2016). Indeed,
in the last two decades a considerable amount of clinical data
demonstrated the involvement of Sig-1R in various pathologies
including cancer, pain, addiction, stroke, ischemic heart disease,
and many neuropsychiatric disorders (Maurice and Su, 2009). It
has been reported that Sig-1R regulates a plethora of different
physiological processes predominantly associated with cellular
differentiation, survival (Hayashi and Su, 2007; Mori et al., 2013),
and immunity (Szabo et al., 2014). Recent in vitro and in vivo
reports suggest that Sig-1R agonists possess potent protective
effects in hypoxia and neurotoxicity models (Katnik et al., 2006;
Klouz et al., 2008; Penas et al., 2011; Mancuso et al., 2012).
Sig-1R and Sig-2R both have been found to modulate neuronal
and microglial responses to ischemia (Cuevas et al., 2011a,b),
and specific Sig-1R stimulation was shown to protect against
the formation of ischemic lesions subsequent to stroke (Ruscher
et al., 2012).

In mammals, the endogenous ligands of Sig-1R include
neurosteroids (e.g., pregnenolone, dehydroepiandrosterone,
progesterone, etc., Baulieu, 1998), and naturally occurring
tryptamines such as N,N-dimethyltryptamine (DMT; Fontanilla
et al., 2009). In early studies, DMT was shown to be present
in various animal tissues and now is considered to be an
endogenous trace amine neurotransmitter that regulates
several physiological functions including neural signaling and
brain/peripheral immunological processes through the Sig-1R

(Su et al., 2009; Shen et al., 2010; Frecska et al., 2013; Szabo et al.,
2014). In addition to its centuries-long use as a sacramental
medicine within the circles of South American natives (e.g.,
yopo, ayahuasca, yagé), DMT was shown to be synthesized
in the mammalian lung (Axelrod, 1961) and brain (Saavedra
and Axelrod, 1972) and was found in human blood, urine,
and cerebrospinal fluid (Franzen and Gross, 1965; Beaton and
Morris, 1984; McKenna and Riba, 2015). Furthermore, evidence
suggests that DMT can be sequestered into and stored in the
vesicle system of the brain and environmental stress increases
its CNS levels in mammals (Barker et al., 1981; Fontanilla
et al., 2009). However, the exact role of DMT in mammalian
physiology is yet to be understood.

Hypoxia induces immense alterations in the phenotype
and function of cells by provoking increased expression of
numerous genes. One of these major changes include the hypoxic
upregulation of the hypoxia-inducible factor (HIF)-1 which
consists of an α subunit (HIF-1α) and a constitutively expressed
β subunit. The presence of oxygen causes the immediate
cytoplasmic degradation of HIF-1α, while in hypoxia the rapid
accumulation of HIF-1α and its subsequent association with the
β subunit leads to the formation of an active transcription factor
that translocates to the nucleus and binds to the promoters of
oxygen-sensitive genes, such as the vascular endothelial growth
factor (VEGF). Thus, HIF-1α is widely considered as a cellular
indicator of hypoxic stress or state (Semenza, 2002).

The application of human induced pluripotent stem cells
(iPSCs)/neural stem cells (NSCs) in order to elucidate the
cellular and molecular details of neurological and psychiatric
disorders has become an increasing trend in modern science.
The lack of appropriate animal models and the unavailability of
human brain tissue pose a significant drawback in biomedical
investigations. Thus, in vitro iPSC-derived neurons are
emerging as promising models both in single-cell and in
simple network-based neurobiological research (Heilker et al.,
2014).

Monocyte-derived macrophages (moMACs) and dendritic
cells (moDCs) are critical players of immune defense in higher
vertebrates. They are present in virtually all tissues of the
body and, by continuously sampling their environment for self-
and non-self-ligands, maintain immunosurveillance and control
tissue protection and regeneration (Steinman and Banchereau,
2007; Szabo and Rajnavolgyi, 2013). In vitro differentiated
moMACs and moDCs are frequently used in different clinical
and experimental settings (Cheong et al., 2010; London et al.,
2013). Furthermore, microglial and moMAC populations of
the CNS are comparable concerning their phenotypic and
functional properties (London et al., 2013) and are considered
as gold standards in immunology and regularly used in various
clinical and experimental settings (Cheong et al., 2010; London
et al., 2013). They have been suggested as comparable with the
microglial populations of the brain and thus may be considered
asmicroglia-like cells (London et al., 2013). Very recently, human
monocytes have been reported to migrate to the brain and are
able to modulate the neuroimmune profile of the CNS (Wohleb
et al., 2013). Thus, within the specific tissue setting of the brain,
moMACs and moDCs may represent microglia-like cell types
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which—besides, in concert with, or similar to microglia—could
significantly contribute to the physiological regulation of the
neural tissue.

As Sig-1R activation has already been reported to be massively
protective in various in vitro and in vivo ischemia and hypoxic-
shock settings (Katnik et al., 2006; Klouz et al., 2008; Cuevas et al.,
2011a,b; Penas et al., 2011; Mancuso et al., 2012), our goal was to
test the hypothesis whether the DMT-mediated activation of Sig-
1R alleviates the effects of hypoxic stress on human primary cells
using iPSC, moMAC, and moDC models.

MATERIALS AND METHODS

Cell Types, Isolation, Culturing, and
Phenotyping
Human iPSC-derived neural progenitor stem cells were obtained
from Axol Bioscience (Little Chesterford, UK) and were
differentiated to cerebral cortical neurons in approximately
35–40 days following the recommended protocol. Phenotyping
of fully differentiated cortical neurons was performed by flow
cytometry using anti-CUTL1 and anti-Ctip2 (both from Abcam,
Cambridge, UK) and isotype-matched control antibodies (BD
Biosciences, Franklin Lakes, NJ) in accordance with the recent
literature (Saito et al., 2011; Sakakibara et al., 2012).

Fluorescence intensities were measured by FACS Calibur
(BD Biosciences) and data were analyzed by the FlowJo
software (Tree Star, Ashland, OR). Further information about
the characterization of cerebral cortical neurons (phenotyping
and transcriptome analysis) is available at the company website
(http://www.axolbio.com/page/cortical-neurons).

Leukocyte-enriched buffy coats were obtained from healthy
blood donors drawn at the Regional Blood Center of the
Hungarian National Blood Transfusion Service (Debrecen,
Hungary) in accordance with the written approval of the Director
of the National Blood Transfusion Service and the Regional and
Institutional Ethics Committee of the University of Debrecen,
Faculty of Medicine (Debrecen, Hungary). Written informed
consent was obtained from the donors prior blood donation
and their data were processed and stored according to the
directives of the European Union. Peripheral blood mononuclear
cells (PBMCs) were separated by a standard density gradient
centrifugation with Ficoll-Paque Plus (Amersham Biosciences,
Uppsala, Sweden). Monocytes were purified from PBMCs
by positive selection using immunomagnetic cell separation
with anti-CD14 microbeads according to the manufacturer’s
instruction (Miltenyi Biotech, Bergisch Gladbach, Germany).
After separation on a VarioMACS magnet, 96–99% of the cells
were CD14+ monocytes as measured by flow cytometry. For
moDC generation, monocytes were cultured in 12-well tissue
culture plates at a density of 2 × 106 cells/ml in AIMV
medium (Invitrogen, Carlsbad, CA) supplemented with 80 ng/ml
GM-CSF (Gentaur Molecular Products, Brussels, Belgium) and
100 ng/ml IL-4 (Peprotech EC, London, UK). On day 2, the same
amounts of GM-CSF and IL-4 were added to the cell cultures, and
moDCs were harvested on day 5. For moMAC differentiation,
50 ng/ml M-CSF (Gentaur) was added to the monocyte cultures

on days 0 and 2, and fully differentiated macrophages were
collected on day 4. Phenotyping of moDCs and moMACs
was carried out by flow cytometry using anti-CD209-PE, anti-
CD14-PE (Beckman Coulter, Hialeah, FL), anti-CD68-PE, anti-
HLA-DR-FITC, and isotype-matched control antibodies (BD
Biosciences).

Induction of Hypoxia in In vitro Cell
Cultures
Induction of hypoxia was performed following the modified
version of a previously described protocol (Wu and Yotnda,
2011). To allow culturemedia to de-gas, 12-well plates containing
serum-free AIMVwere pre-incubated in low-oxygen atmosphere
(94.5% N2, 5% CO2, 0.5% O2) for 4 h using a hypoxia chamber
(Billups-Rothenberg, San Diego, CA). Cells were then seeded on
the plates, placed in the chamber and were incubated at 37◦C
for up to 6 h under similar hypoxia conditions. An automated
regulator (with built-in flow meter and oxygen-sensor) was
used to ensure and maintain the proper composition of gas
mixture within the chamber. After hypoxia treatment cells were
removed from the chamber and were either immediately lysed
(for Western blot or QPCR), or placed on ice (for Annexin
V-FITC staining and flow cytometry analysis).

DMT Treatment and Sampling of Cells
N,N-dimethyltryptamine (R&D Systems, Abingdon, UK) and
BD1063 dihydrochloride (Tocris, Bristol, UK) were used at
working concentrations of 1–200 and 1–100µM, respectively.
BD1063 treatments always preceded the addition of DMT by
30min to allow successful antagonism. DMT, as a controlled
substance (Schedule I drug), was used with the approval and
monitoring of the Hungarian Institute for Forensic Sciences and
the Hungarian National Police Department.

To prepare cell lysates for Western blotting and QPCR
measurements, in vitro cell cultures were sampled after 6 h of
treatment (if not stated otherwise).

RNA Isolation, cDNA Synthesis, and QPCR
Real-time quantitative polymerase chain reaction (QPCR) was
performed as described previously (Szabo et al., 2016). Briefly,
total RNA was isolated by TRIzol reagent (Invitrogen, Carlsbad,
CA). 1.5–2µg of total RNA were reverse transcribed using
SuperScript II RNase H reverse transcriptase (Invitrogen) and
Oligo(dT)15 primers (Promega, Madison, WI). Gene-specific
TaqMan assays (Applied Biosystems, Foster City, CA) were
used to perform QPCR in a final volume of 12µl in triplicates
using AmpliTaq Gold DNA polymerase and ABI StepOnePlus
real-time PCR instrument (Applied Biosystems). Amplification
of 36B4 was used as a normalizing control. Cycle threshold
values (Ct) were determined by using the StepOne 2.1 software.
Constant threshold values were set for each gene throughout the
study. The sequence of the primers and probes are available upon
request.

Western Blotting
Cells were lysed in Laemmli buffer and the protein extracts
were tested by Ab specific for Sig-1R/OPRS1, HIF-1α, ATF6,
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p65, phospho-p65 (S536) (all from Abcam), and β-actin (Sigma,
Schnelldorf, Germany) diluted at 1:500 and 1:000, respectively.
Anti-rabbit Ab conjugated to horseradish peroxidase (GE
Healthcare, Little Chalfont Buckinghamshire, UK) was used
as the secondary Ab at a dilution of 1:5000. The SuperSignal
enhanced chemiluminescence system was used for probing target
proteins (Thermo Scientific, Rockford, IL). After the membranes
had been probed for Sig-1R/OPRS1 or HIF-1α, they were
stripped and re-probed for β-actin.

Cellular Viability Assays
The percentage of apoptotic cells was assessed by using an
Annexin V apoptosis kit (BioVision, CA, USA) following the
manufacturer’s recommendations. The rate of necrotic cell death
was also monitored simultaneously by measuring membrane
integrity. Necrotic cell death was quantified based on the loss
of membrane integrity and the uptake of propidium iodide
(PI). Upon stimulation cells were harvested and stained with PI
(10µg/ml) and analyzed immediately by flow cytometry.

RNA Interference
Gene-specific siRNA knockdown was performed by Silencer
Select siRNA (Applied Biosystems) transfection using Gene
Pulser Xcell instrument (Bio-Rad, Hercules, CA). Pulse
conditions were square-wave pulse, 500 V, 0.5 ms. Immediately
after electroporation, moMACs/moDCs were transferred
to pre-warmed, fresh medium supplemented with penicillin,
streptomycin, and L-glutamine. Gene knockdown in neurons was
performed with the LyoVec transfection system (InvivoGen, San
Diego, CA) according to the manufacturer’s recommendations.
Silencing of Sig-1R gene expression was performed by using a
mix of three of the available Sig-1R siRNAs. Silencer negative
control non-targeting siRNA (Applied Biosystems) was used as
a negative control. The efficacy of siRNA treatments was tested 2
days post-transfection by Western blotting.

Statistical Analysis
Data are presented as mean ± SEM. A t-test was used for
comparison of two groups followed by Bonferroni correction.
Two-way ANOVA was used for multiple comparisons.
Differences were considered to be statistically significant at
p < 0.05 (∗).

RESULTS

Differentiation-Dependent Expression of
Sig-1R in Human iPSC-Derived Cortical
Neurons
In this work, we used three experimental models—moMACs,
moDCs, and iPSC-derived neurons—to investigate the effects
of DMT-mediated activation of the Sig-1R in hypoxia. In a
previous study, we have already showed that human moMACs
and moDCs express high levels of the Sig-1R gene and protein
(Szabo et al., 2014). Though the expression of Sig-1R has also
been demonstrated in human neural cell types (reviewed in
Frecska et al., 2013), it has not been investigated in NSCs and
in iPSC-derived cortical neurons. Therefore, we first sought for

the Sig-1R expression profile of iPSC-derived neurons during
the differentiation process. We found that NSCs have a low
baseline expression of Sig-1R at both the mRNA and protein
levels and its expression increases during the differentiation
of cells into cortical neurons (Figure 1). The expression of
Sig-1R becomes prominent after the 14th (mRNA) and 21st
(protein) days of differentiation where significant changes were
detected as compared to the baseline Sig-1R expression of NSCs
(Figures 1A,B). The highest level of Sig-1R was detected at the
end of the differentiation process (Figure 1).

In vitro DMT-Treatment of Human Primary
Cells Results in Increased Survival in
Severe Hypoxic Environment
Based on our previous findings about the detectable levels of Sig-
1R in human iPSC-derived neurons (Figure 1), moMACs, and
moDCs (Szabo et al., 2014), we next investigated whether the
in vitro treatment of these cell types with DMT, as a natural
endogenous ligand of Sig-1R (Fontanilla et al., 2009), influences

FIGURE 1 | Expression of Sig-1R in differentiating human primary

iPSC-derived cortical neurons. (A) Relative mRNA expression of Sig-1R in

cortical neurons during the differentiation process from iPSC-derived neural

stem cells (NSC). Results represent the Mean ± SEM of four independent

experiments. (B) Sig-1R protein expression in differentiating cortical neurons

measured by Western blot. Result of a typical experiment out of four is shown.

Densitometry data show the Mean ± SEM of four independent

measurements. Asterisk indicates statistical significance (p < 0.05).
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their survival in hypoxia. Human tissues experience a wide range
of diverse oxygen tensions that profoundly differ from that of
the inhaled ambient oxygen (21%, 160 mm Hg). By the time
inhaled oxygen reaches tissues and organs its tension drops to 2–
9% (14–65mmHg; Brahimi-Horn and Pouysségur, 2007). Thus,
in various experimental human tissue cultures, 2–9% in vitro
oxygen level is considered as physiologic normoxia (Simon and
Keith, 2008; Mohyeldin et al., 2010). Certain low vascular density
tissues may experience even lower oxygen tensions, however,
1% or lower level of oxygen is often regarded as a hypoxic
environment in the literature (Semenza, 1999; Liu and Simon,
2004). In our experiments we used severe hypoxic treatment of
cells where, in accordance with other studies (Lee et al., 2013;
Harrison et al., 2015), the level of oxygen was set to 0.5% in a
hypoxia chamber.

Incubation in hypoxic environment rapidly induced cell death
in all cultures as assessed by Annexin V-FITC staining and
subsequent flow cytometry analysis (Figure 2). The ratio of
necrotic cells, as measured with PI-staining, never exceeded
6% median values (±1%, n = 3 in neuron, and ±3%, n = 6
in moMAC/DC cultures; data not included in Figure 2). By
using different concentrations (1–200 µM) we found that
in vitro administration of 10–200 µM DMT increases the
survival of iPSC-derived cortical neurons (Figure 2A), moMACs
(Figure 2B), and moDCs (Figure 2C) in hypoxia. This survival-
boosting effect was statistically significant at DMT concentrations
of as low as 10µM (neurons) or 50µM (moMAC/DCs) as
compared to the non-DMT-treated hypoxia controls (Figure 2).
Non-DMT-treated control cultures (hypoxia controls) of iPSC-
derived neurons showed significant increase in the ratio of
apoptotic cells even after 1 h of hypoxia treatment as compared
to normoxic controls (Figure 2A). Six hours of hypoxia resulted
in a median of 19% (±2%, n = 3) survival rate in case of non-
treated iPSC-derived cortical neuron control cultures, while the
administration of 10 and 50µMs DMT elevated this value to a
median of 31% (±6%, p = 0.037) and 64% (±5%, p = 0.006),
respectively (Figure 2A). Interestingly, in cases of moMACs and
moDCs significant amounts of apoptotic cells could be detected
only after 6 h of hypoxia (Figures 2B,C). Furthermore, no
difference was seen between the modulating effects of 50 and
200µM concentrations of DMT (Figure 2). Normoxic cultures
exhibited no sign of change in cellular viability neither in
controls (Figures 2A–C) nor in DMT-treated (normoxia+1–
200µM DMT) cases (data not shown). Since 50µM DMT, an
achievable serum concentration reported by previous in vivo
human (Strassman and Qualls, 1994) and animal studies (Shen
et al., 2011), was found to be optimal for modulating the survival
capacity of all cell types this concentration was used in further
experiments.

DMT Modulates the Expression and
Function of HIF-1α in Human iPSC-Derived
Neurons, Monocyte-Derived Macrophages,
and Dendritic Cells under Hypoxia
Our results demonstrated that severe hypoxia (0.5% O2) induced
apoptotic death of human primary cells and DMT treatment

could prevent this phenomenon (Figure 2). The expression of
the transcription factor HIF-1α is strongly induced by hypoxia in
many cell types, however, it is subject to ubiquitination and rapid
degradation under normoxia (Huang et al., 1998; Kallio et al.,
1999). The molecular basis of this process is an O2-dependent
hydroxylation of proline residues. Under hypoxia, HIF-1α is
promptly assembled and carries out the downstream control of
the expression of many genes related to hypoxic stress including
VEGF. Thus, increased expressions of both HIF-1α and its target
gene VEGF often signify hypoxic stress or state (Semenza, 2002).
We next aimed to investigate whether HIF-1α was involved or
affected in this process.

We found that 6 h of hypoxia treatment greatly induced
the protein-level expression of HIF-1α in human iPSC-derived
neurons, moMACs, and moDCs, and the administration
of 50µM DMT prevented this increase in all cell types
(Figures 3A,B). In normoxia control experiments, DMT alone
did not influence HIF-1α expressions (Figure 3A). The DMT-
mediated inhibition of HIF-1α protein expression under hypoxia
was found to be statistically significant as compared to hypoxia
controls (Figure 3B). These results were consistent with our
subsequent findings showing significantly decreased mRNA
expressions of VEGF upon DMT treatment in all cell types
under hypoxia (Figure 3C). Furthermore, we also monitored
other stress-related pathways including NF-κB and the ER-stress
sensor Activating transcription factor 6 (ATF6; Elbarghati et al.,
2008). We found no alterations in the protein level expression of
native p65 NF-κB subunit neither could detect its phosphorylated
form in our cell types in hypoxic vs. normoxic conditions within
the time-range of observation (data not shown). Interestingly, the
level of the 50 kDa transcriptionally active form of ATF6 showed
some degree of decrease when cells were treated with DMT under
hypoxia as compared to non-treated controls. However, this
change did not appear to be statistically significant (Figure S1).

Sig-1R Is Indispensable for the
DMT-Mediated Modulation of Cellular
Survival and HIF-1α Expression in Human
iPSC-Derived Neurons, moMACs, and
moDCs under Hypoxia
In previous experiments we showed that Sig-1R is expressed in
human iPSC-derived neurons (Figure 1), moMACs, and moDCs
(Szabo et al., 2014). We also demonstrated that DMT treatment
of these cell types can significantly increase their survival under
severe hypoxia (Figure 2) and decrease their expression of HIF-
1α and VEGF (Figure 3). As DMT has previously been described
as a natural endogenous agonist of Sig-1R (Fontanilla et al., 2009)
we next tested whether Sig-1R was involved in the observed cell
biological effects of DMT.

To clarify the DMT-dependent modulatory role of Sig-1R
in human primary cells and to check its contribution to the
observed phenomena we performed Sig-1R gene knockdown
experiments. Specific silencing of the Sig-1R gene resulted
in a >93% (±5%, n = 3) of downregulation of the Sig-1R
protein in human iPSC-derived neurons as compared to non-
transfected and scrambled siRNA controls, and >96% (±3%,
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FIGURE 2 | The effect of DMT treatment on the survival of human iPSC-derived cortical neurons, monocyte-derived macrophages and dendritic cells

in hypoxic environment. Hypoxia treatment (0.5% O2) of in vitro cell cultures and cellular viability assays were carried out as described in the Section Materials and

Methods. Prior to hypoxia treatment, human primary iPSC-derived cortical neurons (A), moMACs (B), and moDCs (C) were either treated with 1–200µM DMT or left

untreated (hypoxia ctrl). Normoxic cultures were used as positive controls (normoxia). Induction of cellular death was assessed by Annexin V-FITC staining. Flow

cytometry data of three (neurons) or six (macrophages and dendritic cells) independent experiments are shown as Mean ± SEM. In each case, asterisk indicates

significance compared to hypoxia controls (p < 0.05).

n = 4) and >91% (±5%, n = 4) in human moMACs and
moDCs, respectively (Figure 4A). Using the same treatment
protocols as in Figures 2, 3, we found that specific silencing

of Sig-1R abrogated the modulatory potential of DMT on the
survival (Figure 4B) and HIF-1α protein expression of human
iPSC-derived neurons, moMACs, and moDCs (Figure 4C). In
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FIGURE 3 | DMT interferes with the expression and function of HIF-1α in human primary cells. (A) Prior to their placement into hypoxia chamber (0.5% O2),

cells were treated with 50 µM DMT (+DMT) or left non-treated (ctrl). Protein level expression of HIF-1α was evaluated by Western blotting after 6 h of hypoxia

treatment (6 h) in comparison with the baseline expression (0 h). A control experiment was performed at normal oxygen level (normoxia). Results of a typical experiment

out of three is shown. (B) Densitometry analysis of HIF-1α Western blot data in hypoxia using the same experimental setup as in panel (A). Relative density values are

presented as Mean ± SEM of three independent hypoxia experiments. (C) Relative gene expression of VEGF in human primary cells under hypoxia; treatments were

performed as above panel (A). Data are presented as Mean ± SEM of three independent hypoxia experiments. Asterisks indicate statistical significance (p < 0.05).

Neuron, human iPSC-derived cortical neuron; moMAC, human monocyte-derived macrophage; moDC, human monocyte-derived dendritic cell.

DMT-treated Sig-1R knockdown cultures, the survival of all
cell types was found to be significantly lower as compared to
controls (Figure 4B). Similarly, Sig-1R gene silencing resulted

in the ablation of the modulatory capacity of DMT on HIF-1α
protein expression (Figure 4C). These findings were further
validated by an additional set of experiments in which we used
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the selective Sig-1R antagonist BD1063 to block Sig-1R-mediated
signals (Figure S2). The effects of DMT on cellular survival and
HIF-1α expression is thus dependent on the Sig-1R in human
primary iPSC-derived neurons andmonocyte-derived microglia-
like cells.

DISCUSSION

In a previous study we reported the expression of Sig-1R in
human moMACs and moDCs (Szabo et al., 2014). Although
the expression of Sig-1R has been described in several human
tissues its expression has not been investigated in iPSC-derived
neurons. We therefore first examined the mRNA and protein
level expression of Sig-1R in human in vitro differentiated iPSC-
derived cortical neurons during the process of differentiation.We
found, that NSCs have low baseline levels of Sig-1R mRNA and
protein which are increasing during the differentiation process
and both peaking at the end of differentiation (Figure 1). The
increase in Sig-1R protein levels exhibited statistical significance
from the 21st day of differentiation as compared to baseline
(NSC) values (Figure 1B). It is in agreement with recent findings
showing alterations in phenotypic similarities between primary
tissue and iPSC-derived cortical neurons by the analysis of
transcriptomic changes in several typical neural marker genes
(Handel et al., 2016).

After demonstrating the expression of Sig-1R in our in vitro
cultures we next sought to investigate the effects of DMT
treatment in hypoxic stress. We applied a severe hypoxia model
setting oxygen levels to 0.5% (94.5% N2, 5% CO2) in accordance
with recent studies (Lee et al., 2013; Harrison et al., 2015).
Hypoxia caused—dominantly apoptotic—cell death in all types
of cultures within 6 h. Interestingly, DMT-treated cultures
exhibited significantly higher survival rates as measured by
flow cytometry. Relatively low in vitro working concentrations
of DMT were found to significantly increase the survival of
cells (10–50µM for iPSC-derived cortical neurons, and 50µM
for moMACs/moDCs) as compared to non-treated controls
(Figure 2). Cellular viability was less affected in hypoxia-exposed
moMAC and moDC cultures (Figures 2B,C) in concert with
recent findings reporting relative resistance to hypoxia of
monocytes andmonocyte-derivedmyeloid cells (Elbarghati et al.,
2008).

To assess the influence of DMT on cellular physiology under
hypoxia we monitored the expression and function of HIF-
1α, an endogenous indicator of hypoxic stress (Semenza, 2002).
We found that HIF-1α was rapidly upregulated in all cell types
following 6 h of hypoxia exposure, a phenomenon that was
significantly prevented by the administration of DMT (Figure 3).
Consistent with these results, under severe hypoxia, mRNA
expression of the HIF-1α target gene VEGF was also significantly
lower in DMT-treated human primary cells as compared to
control cultures (Figure 3C).

Taken together, our results suggested that DMT may
prevent or mitigate cellular stress in hypoxic environments.
This protective effect may be brought about through various
mechanisms. Since one of the proposed mechanism is the
DMT-mediated activation of Sig-1R (Frecska et al., 2013, 2016),
we used the approach of gene-specific silencing in order to test

the contribution of Sig-1R to the observed phenomenon. Our
findings demonstrated that the downregulation of Sig-1R leads
to the abrogation of DMT-mediated effects, as far as cellular
survival and HIF-1α expressions are concerned, in hypoxic in
vitro cultures of human primary cells (Figure 4). Furthermore,
by using a Sig-1R-specific inhibitor we could further verify our
results in all cell types in terms of cellular survival (Figure S2).
These data suggest a critical, indispensable role of Sig-1R in
the protective and antistress effects of DMT in human iPSC-
derived cortical neurons, moMACs and moDCs in hypoxic
environment.

The observed, Sig-1R-mediated protective and antistress
effects of DMT in hypoxia may be based on multiple
mechanisms. Since the Sig-1R has been shown to promote
neuronal survival against oxidative stress (Pal et al., 2012)
as well as to modulate immune processes (Szabo, 2015),
it is tempting to speculate that its activation by DMT, a
natural, endogenous ligand, also results in similar physiological
phenomena. One of the possible mechanisms is the fine-tuning
of mitochondrial functions and consequently the regulation of
cellular oxygen metabolism, a process that is indirectly related
to HIF-1α expression and function (Ramamoorthy and Shi,
2014). Secondly, Sig-1R activation by DMT may also result in
modulated Ca2+ signaling altering the function of intracellular
kinases involved in cellular survival (Bickler et al., 2004).
Although altered mitochondrial functions may interfere with
HIF-1α expression and activation, it has been shown that hypoxic
stress can also be canalized downstream toward the nucleus
through mitochondrion-associated intracellular stress pathways
irrespective of HIF-1α (reviewed in Masson and Ratcliffe, 2014).
Since Sig-1R is primarily residing in the MAM membrane
system, its activation likely affects an HIF-1α-independent
pathway. Our results support this hypothesis as DMT-treated
human primary cells exhibited higher survival rates despite their
decreased HIF-1α expression, a phenomenon that suggest either
moderate hypoxic stress response or the activation of a HIF-
1α-independent pathway (Figure 3). Although we could exclude
some of these additional stress-related pathways, such as NF-
κB and ATF6 (Figure S1), the biochemical elucidation of these
background mechanisms needs further investigations.

This is the first study reporting that DMT, through the
Sig-1R of human primary cells, can increase survival and
alleviate cellular stress in hypoxic environments. This
phenomenon is associated with increased cell viability and
decreased expression and function of the stress factor HIF-
1α in severe hypoxia-exposed, DMT-treated iPSC-derived
cortical neurons, and monocyte-derived immune cells. The
importance of microglia and microglia-like cells, such as
monocytes, macrophages, and dendritic cells in hypoxia and
post-injury recovery of the CNS has been recently reported
(Jin and Yamashita, 2016). Thus, DMT may also notably
contribute to neuroregenerative and neurorestorative processes
by modulating the survival of microglia-like cells, such as
moMACs and moDCs. In conclusion, our results suggest a novel
and important role of DMT in human cellular physiology and
point out to the relevance of DMT-mediated Sig-1R modulation
in future therapies concerning hypoxia/ischemia-related
pathologies.
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FIGURE 4 | The effect of Sig-1R gene silencing on the DMT-mediated cell survival and HIF-1α expression of human iPSC-derived cortical neurons,

moMACs and moDCs in hypoxia. Gene knockdown of Sig-1R was performed as in Section Materials and Methods. NT, non-treated control; ctrl siRNA,

non-targeting negative control siRNA; Sig-1R siRNA, Sig-1R-specific siRNA. (A) Western blot validation of Sig-1R silencing. A typical experiment out of three (neuron)

or four (moMAC/moDC) is demonstrated. (B) Effect of Sig-1R knockdown on cell viability in hypoxia. Cellular survival was monitored as in Figure 2. Cells were treated

with 50 µM DMT before hypoxia treatment (hypoxia+DMT) or left untreated (hypoxia ctrl). Cultures with prior exposure to targeting Sig-1R siRNA

(hypoxia+DMT+Sig-1R siRNA) or scrambled oligo (hypoxia+DMT+siRNA control) were also tested within the same experimental setup. (C) Densitometry data of

HIF-1α Western blots in hypoxia following Sig-1R gene silencing. Black bars: HIF-1α protein expression after 6 h of hypoxia treatment (6 h) as compared to baseline

(0 h); green bars: baseline (0 h) vs. 6 h hypoxia + 50µM DMT treatment; blue bars: baseline (0 h) vs. hypoxia + 50 µM DMT administration in control siRNA-treated

cultures; red bars: baseline (0 h) vs. 6 h hypoxia + 50µM DMT treatment in targeting Sig-1R siRNA-treated cultures. (B,C) Results of three independent experiments

are shown as Mean ± SEM. Asterisk indicates significance as compared to control siRNA (p < 0.05).
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Figure S1 | DMT does not influence the hypoxia-modulated expression of

the ER-stress sensor ATF6 in human primary cells. (A) Prior to their

placement into hypoxia chamber (0.5% O2), cells were treated with 50 µM DMT

(+DMT) or left non-treated (ctrl). Protein level expression of ATF6 was evaluated by

Western blotting after 6 h of hypoxia treatment (6 h) in comparison with the

baseline expression (0 h). A control experiment was performed at normal oxygen

level (normoxia). Results of a typical experiment out of three is shown. (B)

Densitometry analysis of ATF6 Western blot data in hypoxia using the same

experimental setup as in Figure 3 and panel (A). Relative density values are

presented as Mean ± SEM of three independent hypoxia experiments. Neuron,

human iPSC-derived cortical neuron; moMAC, human monocyte-derived

macrophage; moDC, human monocyte-derived dendritic cell.

Figure S2 | The effect of Sig-1R inhibition on the DMT-mediated cell

survival of human iPSC-derived cortical neurons, moMACs and moDCs in

hypoxia. Specific Sig-1R blocking was performed by using the highly selective

Sig-1R antagonist BD1063 dihydrochloride at working concentrations of

1–100µM. Cellular survival was monitored similarly to Figures 2, 4. Cells were

treated with 50µM DMT before hypoxia treatment (hypoxia+DMT) or left

untreated (hypoxia ctrl). Cultures with 30 min prior exposure to the antagonist

(hypoxia+DMT+1–100µM BD1063) were also tested within the same

experimental setup. Results of three independent experiments are shown as Mean

± SEM. Asterisk indicates statistical significance as compared to hypoxia+DMT (p

< 0.05).
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